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Abstract 
The present works, presents tree different approach to calculate the Probability of Detection (POD) Using the Binomial 
Approach. The ASME BPVC Sec. V Art. 14 proposal is included. POD will be a major issue during near future inspection 
projects. The spread of fracture mechanics as first method to establish critical defect size ask for more accurate proved 
NDT procedures and inspection teams. New methodologies for maintenance are under development to include the POD 
as one of the relevant factors to be considered in Probabilistic Failure Assessment and Risk Based Inspection. The 
Binomial Approach present the advantage to be an  easy method but  relevant drawbacks should be considered. 

 

1. Introduction  

During inspection, not all detectable discontinuities would be detected. The proportion of 
detected (detectable) discontinuities, could change from time to time, from one inspector to other 
inspector, between different teams of inspection or equipments or combinations. These fact is 
gaining importance over the NDT industry, and these has lead to the study of the Probability of 
Detection, which refers to the probability to detect a detectable discontinuity (for easy of 
explanation we will incorrectly use the term "defect" instead discontinuity in some paragraph of 
this paper). It is important to keep in mind that POD calculations are made based on detectable 
indications of certain critical size. There is no sense to calculate POD for non detectable 
discontinuities (1). 

POD applied in Nondestructive Testing has started at NASA in the early on 1970s (2), while the  
phenomenon seems be conceived or imported from other brands of technology as 
telecommunications,  radar and medicine (3). 

Most Nondestructive Testing (NDT) Methods and techniques are based on the interpretation of  
signals which comes from interactions of some physical stimulus with the medium and the 
discontinuity. The reception and interpretation of those signals could be affected by many 
different phenomena, like system noise or other unexpected signals coming from other processes. 
In that way, the inspection results could be affected. 

NDT  as any other technology is susceptible to errors. The consolidated techniques has well know 
drawbacks,  and the human factor is a major issue: Fatigue, lack of proper training and experience. 
Improper procedures or devices shall also be included in the list of factors that can introduce 
error. 

The importance of POD in the NDT industry could be seen trough the increasing number of papers 
wrote in the last years as shown in Figure 1(3). 
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Figure 1. (Courtesy of Jochen Kurz, Fraunhofer Institute for Non-Destructive Testing IZFP ) (3). 

Some industry sectors as part of Nuclear, offshore oil and gas and Aeronautics consider POD as 
crucial, including the fact that POD will have an incidence in Risk (4) and Probability of Failure (5).  

The present paper, shows some techniques and examples to have an estimate of POD from 
binomial point of view. It is recognized that the binomial approach is far from optimum method 
but simplicity of calculations make it an attractive choice. This is the technique indicated in ASME 
BPVC Section V, Art.14 (2013). 

2. Foundations  

If an experiment is performed with trials that  are independent each other with only two possible 
outcomes (failure or success for example) with probability of success  푝, the phenomena can be 
described by a binomial distribution: 

 퐵푖푛(푛,푝)   (E.1) 

where  푝 is the actual proportion of success of the population.  

The proportion of fails and success follow the rule: 

푝 + 푞 = 1  (Ec. 2) 

Where 푞 is the proportion of fails. 

Known 푝, the probability to have 푋 success in 푛 trials is: 

푝(푥 = 푋) = 푝 푞( )   (Ec. 3) 
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But the unknown quantity is 푝, in the NDT case, the proportion of positive detections in our 
system, including all factors that could affect the test: environment, procedure, equipment, 
operators and the component under evaluation. 

In the classical example the problem is described by cube plenty of green and red apples. If one 
need to know the proportion of red apples, we can take all the apples and count. This couldn´t be 
done if the populations is too big. In this case, the method is take a sample of the population and 
calculate the sample proportion 푝̂ instead  푝. 

If 푛 trials where done with 푘 successess, i.e. if a welded plate with 푛 = 10  defects is examinated 
and 푋 = 8 defects where detected a rough estimate of success proportion (the POD) of the 
system is: 

푝̂ =      (E. 4) 

푝̂ =
8

10
= 0.8 → 80% 

The first experiment seems to indicate that the POD could be 80%. If a new experiment is 
performed under the same conditions of previous one, it is possible that the "new" sample 
proportion, the new score will be 60%. If the experiment is repeated many times, is possible that 
different sample proportions will result each case. So, a conservative procedure is needed to fix 
a minimum POD from one experiment.  

The Statistical way to deal with the previous situation is through the use of confidence intervals. In 
the present case, the confidence means that if the test is repeated a certain number of times, we 
have a percentage of guarantee (the confidence)  that the parameter of interest is inside the 
interval; i.e. if the confidence is 95% and the calculated lower bound POD is 90%, we can be sure 
that in 95 of times the POD will be 90% or greater, as presented in Figure 2. 

 

Figure 2. 95% Confidence upper Interval. 
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As 푝 is unknow, it can be inferred with reasonable statistic support that (5):  

퐿(푝̂) < 푝 < 푈(푝̂)  (Ec. 5) 

In other words, if possible to create the interval from the test which produced 푝̂. For this interval 
퐿(푝̂) is the lower bound and  푈(푝̂) is the upper bound of the interval.  

After the interval has been built the lower bound 퐿(푝̂) can be calculated an can be used as a good 
estimate of minimum possible  POD for a confidence level. 

Most times a POD of 90% is required with a confidence of 95%. The accepted nomenclature for 
this value is 푃푂퐷 / . This numbers seems to be selected from an arbitrary basis, nevertheless, 
some recent works connects the POD with failure probability and risk based inspection philosophy 
to produce specific requirements for POD(4) & (5). 

In accordance with the previous discussion, for practical purpose the POD would be the lower 
bound 퐿(푝̂) of the confidence interval: 

퐿(푝̂) ≤ 푝 < 1       (E. 6) 

3. Confidence interval 

The confidence is equivalent to the area below the distribution function. If 95% confidence is 
required, this means that the interval should be defined by 95% the area below the curve 
(훿 = 0.95) as shown in Figure 3. Once the confidence has been fixed, the next step is to find the 
lower limit 푘 = 퐿(푝̂).  

 

Figure 3. Lower bound confidence interval. 
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훿 = ∫ 퐵푒푡푎(푝,푎, 푏)푑푝  (E.7) 

Expression (E.7) could be used to calculate the confidence coefficient 훿 from 푘 = 퐿(푝̂) or vice 
versa (which would be the most common situation). Different software could be used. Annex A 
present a MATLAB script which let us find the confidence 훿 (퐶표푛푓푖푑푒푛푐푒 = 훿푥100) from  
푘 = 퐿(푝̂). 

4. Bayesian Approach  

In the Bayesian approach, previous knowledge of an aspect related with the phenomenon, could 
be used to find a probability of occurrence; i.e. If we know the number of ice creams that was sold  
in a sunny Sunday, we can estimate if a specific day was a sunny Sunday from the number of ice 
creams sold that day. 

In the Bayesian point of view, 푝 is a random variable described by a probability distribution 
function, which is subjective and based on the experimenter "previous" knowledge. In that way, if 
the function is known, it is possible to fix a Credible Set (the Confidence Interval concept applied in 
the Bayesian framework) and find his lower bound limit using (E.7). 

 Once the experimenter select a previous distribution for 푝, the experiment is conducted and 
previous distribution is corrected taking in consideration the experiment results to produce a 
posterior distribution. In our case, posterior distribution could be the same type of function than 
previous one, but with new parameters. These can be written in the following way (5): 

휋(휃|푥) = ( | ) ( )
∫ ( | ) ( )

    (E. 8) 

Where 휋(휃) is the previous distribution of the random variable 휃, 휋(휃|푥) is the posterior 
distribution under the new evidence 푥, and 푓(푥|휃) is the sample distribution. 

Appendix 1 of reference (5) presents a clear explanation of the Bayesian Approach, and the use of 
a Beta distribution to represent the random variable 푝. 

The Beta distribution use the Beta function with parameters 푎 and  푏 which is also built from 
Gamma Function as shown below: 

퐵푒푡푎(푝,푎, 푏) = ( )
( ) ( )

푝 (1 − 푝)   (E. 9) 

Where Γ is the gamma function. 

NOTE 1: In the present paper the notation 퐵푒푡푎(푝,푎, 푏) is preferred instead 퐵푒푡푎(푥, 푎,푏) or 퐵푒푡푎(푎,푏) to make emphasis in the fact 
that is a Beta distribution of the random variable 푝. 

A relevant aspect is that Beta distribution is the conjugate of the Binomial distribution. In that way, 
the denominator of (E.9) can be resolved analytically(5). The easy of calculation introduced by this 
fact is one of the factors that make The Beta distribution a preferred Distribution Function for 푝. 
Another relevant point is that Beta is defined in the interval [0,1].  
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In the Figure 4, the  퐵푒푡푎(푝, 100,20) distribution function is presented. 

 

Figure 4. Beta(p,100,20) Distribution function. 

The Beta Distribution function shape is configured by the parameters 푎 and 푏. If 푎 = 1  and  푏 =
1, the Beta distribution becomes the uniform distribution as can be observed in Figure 5. 

 

Figure 5. Uniform distribution, Beta(p,1,1). 

One of the most common approximations is to select Beta(p,1,1), the uniform distribution as the 
previous distribution. 

푝 → 퐵푒푡푎(푝, 1,1)      (Ec. 10) 

This is equivalent to say that the experimenter doesn't have any preference non previous 
knowledge of POD, all probabilities are equally possible.  

A very appreciated property of Beta Distribution is that the new distribution parameters are easily 
obtained from test result following the next expressions: 

푎 = 푎 + 푁  (E. 11) 

푏 = 푏 + (푁 −푁 ) (E.12) 

Where 푁  is the number of detected defects and 푁 is the total number of defects included in the 
test. 
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The posterior distribution is: 

푝 → 퐵푒푡푎(푝,푎 , 푏 )   (E. 13) 

If  푎 = 1,  푏 = 1,   (E. 14)  becomes: 

푝 → 퐵푒푡푎[푝, (1 + 푁 , 1 + (푁 − 푁 )]  (E.14) 

The new 푎 parameter is the old 푎 parameter plus the number of successes (detected defects). The 
new 푏 parameter is the old 푏 parameter plus the number of fails (non detected defects). 

Some examples are presented below: 

Example 1:  

if we have a welded plate with 10 separated and similar defects (over critical size and with similar 
size each). We would like to calculate the POD of an inspection team using a well tested procedure 
and optimal equipment. After the inspection has been done, the team successfully detect 8 of 10 
defects. So,  푁 = 10 and 푁 = 8. 

We would like to find  퐿(푝̂) the lower bound limit. 

The posterior distribution in accordance with (E.14) after the test will be: 

푝 → 퐵푒푡푎(푝, 9,3) 

This distribution is shown in Figure 6. 

 

Figure 6. Beta(p,9,3) Distribution. 
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Although the score 푝̂ = 0.8 represent only one experiment and could not be used to evaluate the 
performance of the inspection team most part of times. 

The lower bound value can be obtained through recognized PC statistics software even using free 
mobile devices applications (6). 

 

Figure 7. Lower bound limit for a confidence of 0.9. 

 

Example 2 

Suppose the same situation that Example 1 but the confidence required is now  95%. Posterior 
distribution is still: 푝 → 퐵푒푡푎(푝, 9,3) 

Figure 8 shows the Credible Set (Confidence Interval) and the lower bound limit. 

 

Figure 8. Lower bound limit for a confidence of 0.95. 
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5 ASME BPVC Art. 14 (2013) POD Lower Bound 

ASME code seems to use the Clooper Pearson approach also called the exact interval (8). Paragraph 
below ASME notation is used. The code presents the following expression referred to the lower 
bound confidence interval: 

훼 = 훽(푝 ;퐷,푁 −퐷 + 1)  (E.15) 

The expression seems to be easily compressible in the following form: 

훼 = ∫ 퐵푒푡푎(푝,퐷, (푁 −퐷) + 1)푑푝     (E.16) 

Where  푝  is the lower bound, 퐷 represent the successes (defects detected) and 푁 is the total 
number of trials (the total number of defects) and 훼 is the confidence coefficient. 

The point of view of ASME is close as presented above (E.7). The main difference is the posterior 
parameter 푎, which is exactly equal to the number of successes 푎 = 푁 . The other 
parameter remains the same 푏 = (푁 −푁 ) + 1.  

The posterior distribution after the test will be: 

푝 → 퐵푒푡푎(푝,푁 , (푁 − 푁 ) + 1)  (E.17) 

The (E.17) produce the same Interval as the Clooper Pearson "Exact" interval as can be seen in the 
reference (8). More examples are presented below: 

Example 3. 

Suppose the same conditions as the Example 1 including the same confidence of 90%, 푁 = 10  
and 푁 = 8. The posterior Beta distribution in accordance with (E.17) will be 퐵푒푡푎(푝, 8,3),  as 
shown in Figure 9. 

  
Figure 9. (left) Beta(p,8,3) Distribution Function. (right) 90% confidence interval and lower bound. 
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Example 4. 

Suppose the same conditions as Example 3, but the confidence is increased to 95%. In this case the 
new lower bound will be 퐿(푝̂) = 0.49 as can be seen in Figure 10. 

 
Figure 10. Beta(p,8,3) Distribution for 95% confidence interval and lower bound. 
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Example 5. 

For the present case suppose the following values: Total number of defects in the test 푁 = 10. 
Defects detected 푁 = 10, the inspection team detects all the 10 defects. The lower bound is 
required for a confidence of 90%,95% and 99%. 

According to (E.17) the distribution will be: 퐵푒푡푎(푝, 10,1) 

This Beta distribution produces the following results: 

Confidence Lower Bound 
90% 0.79 
95% 0.74 
99% 0.63 

 

As shown in Figure 11 (i), (ii) and (iii).

 
 

(i) Beta (p,10,1) Distribution with a 90% Confidence 
Interval.  

(ii)  Beta (p,10,1) Distribution with a 95% Confidence 
Interval. 

 

 

(iii)  Beta (p,10,1) Distribution with a 99% Confidence 
Interval. 

 

 
Figure 11. Beta (p,10,1) Distribution with 90%, 95% and 99% Confidence Intervals. 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

p

P
ro

ba
bi

lit
y

k=0.79

Confidence=90%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

p

P
ro

ba
bi

lit
y

k=0.74

Confidence=95%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

p

P
ro

ba
bi

lit
y Confidence=99%

k=0.63



12 of 14 rev1 

 

The previous example shows a very relevant characteristic of the binomial approach and the 
reason why some references (including ASME and ENIQ documents) establish that this approach is 
far from  optimum. As can be seen, even detecting all the defects included in the test, it is not 
possible to guarantee a high POD with a high confidence. If higher POD is requested the total 
number of defects used in the experiment should be increased.  

If a 푃푂퐷 /  is required, the number of defects shall be increased to a minimum of 29, and the 
inspection team need to detect all 29 defects. This is known as the 29 of 29 rule for the binomial 
approach. 

6 Some relevant aspects regard the Binomial approach presented in ASME BPVC Art. 14 (2013) 

One of the drawbacks of the binomial approach is that all defects should have a very similar size 
and morphology. If the defects are of different sizes they has different probabilities to be detected 
and the foundations of binomial approach are not valid. Considerations about defect orientation 
and location could be also an issue. 

If a "Size vs. POD" curve is needed, the test should be repeated for different groups of defects 
sizes. This increase amazingly the number of defects required. ASME gives the alternative to use 
the same plates with defects many times in a blind fashion, but this approach has a well supported 
criticism (see reference (1) MIL-HDBK-1823A (2009), page 36 point 6.4). 

The most critical limitation of Binomial Test is the number of defects required to achieve the 
common 푃푂퐷 / . As Example 5 shows, 29 of 29 defects shall be detected to achieve  푃푂퐷 / . 
If the inspection team have only one miss a 90% POD could not be guaranteed and the lower 
bound will be 퐿(푝̂) = 0.84 as can be seen in Figure 12. 

 

Figure 12. Confidence coefficients for  Distribution Function Beta(p,28,2), 28 detected from 29 defects presented in the 
test. 
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If during the Test design, the experimenter assumes that maybe 2 defects would not be detected 
by the inspection team, 61 defects are needed to achieve 푃푂퐷 /  as can be seen in Table T-
1471.1 de ASME BPVC Sec V. Art. 14 (2013). 

One very important point, not frequently mentioned is that if the total number of defects is 
reduced, the performance of good inspection teams could be worse than if the number of defects 
is large. 

7 Use of F-Distribution 

One simple and fast approach is the use of the lower bound interval (LCL) mentioned in the 
reference (9). In this case the lower bound could be obtained using: 

 

퐿퐶퐿 = ( ) ( , )
  (E.19) 

Where 퐹 (푓 , 푓 ) comes from the F-Distribution with coefficient of confidence 훼 and  푓  y 푓  the 
distribution parameters, calculated using: 

푓 = 2(푁 − 푁 ) 

         (E.20) 

푓 = 2푁  

 

8 Conclusions 

The Binomial approach is an easy way to calculate the POD but has some relevant drawbacks. If 
the confidence and POD should be high, the number of samples should be high with direct impact 
in the test cost. If the a Size vs. POD curve should be required, the test should be repeated for 
different groups of defects sizes. 
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Appendix 1. Confidence Associated with a lower bound value. 

% Confidence calculation given the lower Bound 
close all; clear all; clc; 
 x=0:.01:1; 
e=8;% Successes 
f=2;% Fails 
alfa=e; beta=f+1; 
 %Beta Distribution Graph 
y=betapdf(x,alfa,beta); 
figure(1); 
plot(x,y,'Color','r','LineWidth',2);xlabel('p');ylabel('probability') 
 plow=.49 %POD proposed Lower bound 
 Confidence=1-betacdf(plow,alfa,beta) %Confidence associated with ´plow´ 
% Carlos Correia - Jan 2015 
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