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Abstract. 
  
The problem of flaw identification in fusion welded joints has been addressed using 
different methods and principles; nevertheless, we think this is a still open field, not solved 
completely yet. The deal amount of data that is possible to record with the new available 
technology today, makes automatic flaw classification an important engineering task. In 
the present work, we used two approximations to show other possibilities to tackle this 
unsolved problem. The first one is based on the properties of the covariance matrix, 
calculated from the level 2 approximation wavelet coefficients and obtained from a B-
scan image with a defect. In the second procedure, the kurtosis and skewness of the 

continuous wavelet coefficients of five scales (taken from several ultrasonic signals) are 
used to create a feature space to train a Fisher Linear Classifier to discriminate common 
defects in welding joints. The behavior of the classifier was tested to differentiate 
discontinuities and the preliminary results are presented. 
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1. Introduction. 

The problem of ultrasonic signals identification and classification in non-destructive testing 
of welding joints has been explored in different ways and with different methods. The most 
common approach is the echodynamics identification that is based on the observation of 
changes shown on the amplitude of A-scans presentation as a function of position of the 
transducer in the piece’s surface. This is the classical method used in level II courses for 
inspectors[1]; nevertheless, it is relatively unreliable and it is very dependent of inspector’s 
experience and skills. 
Since the development of computers after 1980, and the implementation of a great deal 
of signal processing software, the use of the Fourier Transform Representation to evaluate 
different material properties and characteristics were extensively reviewed [2-5]; 
nonetheless, the frequency representation was not appropriate  enough to achieve the 
signal classification task. Nowadays computers and software allows high velocity and a lot 
of operations for signal processing, it is possible to change the domain representation, 
transforming, filtering, decomposing, denoissing, compression and many others 
unsuspected operations. At the same time, statistical and neural network routines have 
been created and extensively used to different applications[6,8].  Neural Networks have 
proved to be very efficient in recognizing different real flaws using ultrasonic signals [9]. 
Generally, the supervised methods have shown better results; however, the central 
problem for a good identification is not the method of classification by itself, the behavior 
of a method is a function of the quality of the selected features to represent the signal. In 
the present work, the continuous (CWT) and discrete wavelet transform (DWT) are used.  
The DWT is used to compress a B-scan image and the covariance matrix is presented as 
flaw characteristic representation. On the other hand, the kurtosis and skewness of the 
coefficients related to a set of scales of the CWT are selected as  features and employed 
to train and test a Fisher Classifier. Four of the most commons welding discontinuities signals, 
acquired by means of pulse echo technique, namely pores cluster, non metallic inclusions, 
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ID connected crack and lack of fusion, are used to represent the main discontinuities 
found in welds. The pores cluster and nonmetallic inclusions are considered as volumetric 
flaws; while, ID connected crack and lack of fusion are planar flaws. Both were used to 
train a statistical classifier to separate planar from volumetric flaws. 

 
2. Theoretical Review. 

Wavelets  

 
The wavelet transform is a useful tool that allows many operations over the signals, the most 

common, denoissing and compression[10]. This transformation is essentially a representation 
of the correlation between the signal and a special function known as wavelet that is 
scaled and translated along the signal. The operation is synthesized in the following 
expression:  
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Where a  is the scaling factor, k is the translation, t  is the time, )(tf  is the time domain 

function of interest, and wC are the coefficients for each value of scale and translation. The 

continuous wavelet transform is a similar operation to view the signal at many different 
levels of magnification. It can be seen too, as a projection of the signal in a space of a 
higher dimension, where the spatial frequency components are easily detected.  
  
The wavelet transform can be operated with dyadic scales and translations, down 
sampling the coefficients after each step obtaining the discrete wavelet transform. This is 
an extremely useful tool for compression. The level of decomposition used, produce a set 

of coefficients related with a frequency band in the signal. The higher level of 
decomposition the fewer coefficients are produced. The scaling and wavelet functions 
operate recursively over the signal producing approximation and details coefficients.   
 

Statistical Functions & Operators  
 
In the next lines some classical definitions are presented[11]. The variance is given by: 
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Where ijx  is the value  i  of a set of values of j  variable and jx  is the mean of these 

values, n  is the number of elements for the  j  variable. 

 
Skewness is a measure of the asymmetry of the data around the sample mean. If skewness 

is negative, the data are spread out more to the left of the mean. If skewness is positive, 
the data are spread out more to the right. The skewness of the normal distribution (or any 
perfectly symmetric distribution) is zero. The Skewness is given by: 
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Kurtosis is a measure of how outlier-prone a distribution is. The more outlier-prone present 
greater values and vice versa. The kurtosis is given by: 
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The covariance matrix is a square and symmetric matrix that has the variances of each 
variable in its diagonal and the covariance within the variables outside the diagonal. A 
very common way to calculate this matrix is by means of the following operation: 
 

XX
n

Cm '
1=   (Eq. 5) 

 

Where X is data centered matrix obtained subtracting the mean of each  variable from 
the data matrix, the notation ( ′ ) represents the transposition operation and  n  is the 

number of elements observed. 
   
 

Fisher Linear Discriminant  
 

For the case of two sets of data, each one built with elements 
n

ix ℜ∈ , and labeled as 

}2,1{∈ky , the associated training vector is as )},(),...,,{( 11 ll yxyxT = . The Fisher Linear 

Discriminant algorithm uses the training vector to create a plane that divides the space in 

two regions, one associated with the class 1 and the other with the class 2. To find the 
appropriate plane, the algorithm computes the vector that maximizes the class separability 
function[7]. 
 
 

3. Materials and Methods. 
 
The procedure followed in the present work is schematized in Figures 1 and 2. 
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The shear wave signals were obtained from different steel samples (10 mm thick) with 
induced flaws, from a kit manufactured by SONASPECTION. The selected flaws were: (1) 
pores cluster, (2) non-metallic inclusion, (3) internal surface connected crack and (4) lack 

of fusion.  
The radiography of each discontinuity is shown in Figures 3 and 4 just for graphical 
purposes. 

Figure 1.Schematic representation of the procedure to obtain a covariance matrix image 

from the level 2 discrete  wavelet coefficients. 
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In the first procedure (Figure 1), the level 2 coefficients of each A-scan were obtained to 
work with a reduced dimension. The new reduced B-scan representation was used to 
compute the covariance matrix. The images of the covariance matrix were obtained from 

a set of 50 B-scans experimentally obtained from each kind of flaw. The resultant patterns 
were analyzed.  
 
 

  
(a) Pores Cluster (b) Non metallic inclusion 

 
Figure 3. Volumetric flaws. (a) Pores Cluster, (b) Non metallic inclusion. 

 

 
 

  
(a) ID Connected Crack (b) Lack of Fusion 

 
Figure 4. Planar Flaws. (a) ID Connected Crack, (b) Lack of Fusion 

 

 
In the second procedure (Figure 2), 250 signals were recorded from each type of reflector 
using commercial ultrasonic equipment. The refracted angle was 60o shear wedge and the 
transducer was a Krautkramer Branson, high damped (alpha series) with a frequency of 5 
MHz. Those signals were obtained with a slight variation in the position of the transducer on 
the surface of the sample to introduce different angular positions between the flaw and 
the ultrasonic beam. The continuous wavelet transform was obtained for each signal using 

the Daubechies 4th degree wavelet. The decomposition was made using 48 scales, and 
the coefficients from the scale 15 to 20 were selected for all the defects. The kurtosis and 
skewness were calculated for each scale and applied as features of the signals. In the 

features space, the signals were described by a set of five values in 
2ℜ of the form: 

 

),( iii ksO =   (Eq. 6) 
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Where ii ks ,  were the skewness and kurtosis of each selected scale. 

 
The Fisher Linear Discriminant function was built with a set of 100 signals, and 150 signals 
were used to test the classifier. 
 

The following characteristics of the excitation pulse were used:  
 

• Double spike, double polarity 

• Pulse length of 15 µs 

• Maximum peak to peak voltage 130 V 
 

4. Results and Discussion. 
 

Procedure 1. Covariance Matrix Image. 

 
A typical B-scan obtained under the conditions established in the Section 3, is presented in 

Figure 5. As the ultrasonic beam scans the volume of interest the signals are collected and 
finally displayed. In this B-scan format, the image shows a center region with the flaw 
presence, and the rest without relevant indications. A compressed B-scan image is shown 
in Figure 6. 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. B-scan image obtained from the 

test- piece with a side bevel  lack of fusion. 
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Both images in Figure 5 and 6, contains visually the same information. The presence of a 
reflector is clearly presented at the center of the image, approximately; but the image in 
Figure 6 has only 26 % of points compared to Figure 5, with a compression of 74 %. 
  
In a multivariate system there are a set of elements and a related set of variables 
measured over each element. This array is classically described by a data matrix with the 
elements located in the matrix’s rows, and the variables in the columns. In the present work 
the B-scans were arranged with vertically A-scans. This system can be understood as a 
multivariate problem, with the difference that there is only one variable (the signal 
amplitude), but measured in different positions. The variable is always the amplitude for a 
given time value, but the amplitude changes as the transducer scans the surface of the 
sample. In other words, this is a spatial approximation of the ultrasonic signal evolution. 
 
With this array, the covariance matrix will show in the diagonal the variance of each B-scan 
row, the equivalent to the variance of spatial amplitudes. Outside the diagonal, the 
covariance matrix will show the correlation between each pair of spatial amplitudes. The 
image of covariance matrix and the corresponding diagonal elements, could be used as 

a reference pattern associated with the nature of the flaws spatial amplitude distribution. 
This approach can exploit the spatial features instead of time or frequencies  
characteristics. The general appearance of covariance matrix for the four types of 
reflectors and the variance values of spatial amplitudes are presented in Figures 7 to 10.  
 
 
 
 
 
 
 

 
 
 

Figure 6. B-scan compressed 

image obtained from the test- 

piece with a side bevel  lack of 

fusion. 
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Figure 7. Lack of Fusion. Covariance Matrix of 2 level decomposition DWT, and the 

diagonal values.  

Figure 8. ID connected crack. Covariance Matrix of 2 level decomposition DWT, and the 

diagonal values. 
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As can be seen in Figure 7, the lack of fusion, shows a region of strong variance 

concentrated at the center of the covariance matrix and a secondary region of low 
variance at the end right corner. The geometrical situation of this reflector seems to 
produce a strong concentration of energy in a specific region of the signals. The second 

Figure 9. Non-metallic inclusion. Covariance Matrix of 2 level decomposition DWT, and the 

diagonal values. 

 

Figure 10. Pores Cluster. Covariance Matrix of 2 level decomposition DWT, and the diagonal values. 
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region with a mitigated variance (second peak in the diagonal) at the image right corner, 
indicates the presence of perturbations in the signal produced perhaps by geometrical 
reflectors. 
  

The covariance matrix for the ID connected crack in Figure 8, shows two high variance 
regions (the two peaks in the diagonal plot). These two peaks so close one to another, 
could be produced by the toe and the tip crack signals. The distance between them are 
correlated with the crack height, and it is important to take into account this value 
because the signal  coming from the non metallic inclusion, in Figure 9, have the same 
pattern, but differs essentially in the peak separation distance.  
 
In Figure 10, the covariance matrix for the pores cluster, shows an inverted variance 
distribution in comparison with the lack of fusion in Figure 7. The first peak (the first zone of 
high variance) is of less amplitude than the second one. This is a characteristic of pores 
signals. Generally the variance of pores signals is low in comparison with other signals flaws. 

Many reflectors acting as emitting sources have the effect to spread out the energy, 
showing a homogeneous amplitude distribution along the signal. 
 
As can be shown in Figures 7 to 10, the lack of fusion and pores cluster are clearly different 
observing the shape of covariance matrix; nevertheless to distinguish between non 
metallic inclusion and ID connected crack it was important to take into account the 
distance between the peaks of maximum variance. The patterns shown in Figures 7 to 10 
were observed in a proportion summarized in Table 1. 
 
 
 
Table 1. Percentage of coincidence with Figures 7 to 10 from all experimental B-scans 
data. 
 

Side Bevel Lack of 
Fusion 

(Figure 7) 

ID Connected 
Crack        

(Figure 8) 

Non-metallic 
inclusion    (Figure 9) 

Pores Cluster 
(Figure 10) 

90% 80% 70% 100% 

 
 
The high values in the diagonal indicates the variance of variables have higher values in 

comparison with the covariance between variables. The presence in the matrix of a 
middle zone with high values indicates this is the zone of B-scan containing useful 
information. The covariance matrix image or the associated diagonal could be used to 
train an automatic classifier and it could be used also as a visual tool to the inspector in 
future instrumentation developments.  
 
 
Procedure 2. Linear Fisher Classifier. 

 
As it was mentioned in the Section 3, 250 signals were obtained from each kind of reflector, 
a set of 100 signals were used to train a Linear Fisher Classifier and 150 signals were used to 

test the classifier. The selected features were the kurtosis and skewness from a set of CWT 
coefficients from the same five appropriated scales in each case, showing a good signal 
representation. The results are summarized in Table 2, and some examples are shown in 
Figures 11 to 13. 
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Table 2. Results obtained with a trained Fisher Linear Classifier. 

 

Group 1 Group 2 Success 
Percentage 

Figures 

Pores Cluster Lack of Fusion 100 % Figure 11 

Non-metallic Inclusion ID Connected Crack 60 % Figure 12 

Non-metallic Inclusion Lack of Fusion 70 % Figure 13 

Pores Cluster Non-metallic Inclusion 100 % - 

Pores Cluster ID Connected Crack 100 % - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 11. Classification of a test 

group in a system Pores cluster vs.  

Lack of Fusion (LF). SPRTOOL- 

image. 
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As can be shown in Figures 11 to 13, kurtosis could be a good feature to classify pores 
cluster from other discontinuities. A possible explanation could be in terms of how the 

energy is described in the characteristic pulses. It seems the energy in the pores cluster 
signals is more spread out than others discontinuities. In those cases, the kurtosis value had 
a strong tendency to be low.  
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Figure 12. Classification of a test 
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The success of classification, for non-metallic inclusions, lack of fusion and ID crack was 
relatively low because the selected features (kurtosis and skewness) have closely values for 
these discontinuities.    
 

5. Conclusions. 
The matrix covariance is a tool that exploits the A-scans spatial characteristics and shows 
interesting properties which can be used as features for an automatic signal classifier or 
even as a visual guide to the inspector. The most easily revealed flaws using this 
approximation were pores cluster and lack of fusion. The non-metallic inclusion and ID 
connected crack could not be easily differentiated using the matrix covariance 
approximation. The identification of pores cluster was also well determined using the Fisher 
Linear Discriminant function (our second procedure). The experimental results obtained for 
lack of fusion, non-metallic inclusion and ID connected crack were limited; however, the 
100% of pores cluster signals were positively identified and this is encouraging for future 
approximations on automatic flaw classification, using TOFD images from raw data, for 

example. 
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